home *** CD-ROM | disk | FTP | other *** search
- *
- ************************************************************************
- *
- SUBROUTINE ZSYRK ( UPLO, TRANS, N, K, ALPHA, A, LDA,
- $ BETA, C, LDC )
- * .. Scalar Arguments ..
- CHARACTER*1 UPLO, TRANS
- INTEGER N, K, LDA, LDC
- COMPLEX*16 ALPHA, BETA
- * .. Array Arguments ..
- COMPLEX*16 A( LDA, * ), C( LDC, * )
- * ..
- *
- * Purpose
- * =======
- *
- * ZSYRK performs one of the symmetric rank k operations
- *
- * C := alpha*A*A' + beta*C,
- *
- * or
- *
- * C := alpha*A'*A + beta*C,
- *
- * where alpha and beta are scalars, C is an n by n symmetric matrix
- * and A is an n by k matrix in the first case and a k by n matrix
- * in the second case.
- *
- * Parameters
- * ==========
- *
- * UPLO - CHARACTER*1.
- * On entry, UPLO specifies whether the upper or lower
- * triangular part of the array C is to be referenced as
- * follows:
- *
- * UPLO = 'U' or 'u' Only the upper triangular part of C
- * is to be referenced.
- *
- * UPLO = 'L' or 'l' Only the lower triangular part of C
- * is to be referenced.
- *
- * Unchanged on exit.
- *
- * TRANS - CHARACTER*1.
- * On entry, TRANS specifies the operation to be performed as
- * follows:
- *
- * TRANS = 'N' or 'n' C := alpha*A*A' + beta*C.
- *
- * TRANS = 'T' or 't' C := alpha*A'*A + beta*C.
- *
- * Unchanged on exit.
- *
- * N - INTEGER.
- * On entry, N specifies the order of the matrix C. N must be
- * at least zero.
- * Unchanged on exit.
- *
- * K - INTEGER.
- * On entry with TRANS = 'N' or 'n', K specifies the number
- * of columns of the matrix A, and on entry with
- * TRANS = 'T' or 't', K specifies the number of rows of the
- * matrix A. K must be at least zero.
- * Unchanged on exit.
- *
- * ALPHA - COMPLEX*16 .
- * On entry, ALPHA specifies the scalar alpha.
- * Unchanged on exit.
- *
- * A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is
- * k when TRANS = 'N' or 'n', and is n otherwise.
- * Before entry with TRANS = 'N' or 'n', the leading n by k
- * part of the array A must contain the matrix A, otherwise
- * the leading k by n part of the array A must contain the
- * matrix A.
- * Unchanged on exit.
- *
- * LDA - INTEGER.
- * On entry, LDA specifies the first dimension of A as declared
- * in the calling (sub) program. When TRANS = 'N' or 'n'
- * then LDA must be at least max( 1, n ), otherwise LDA must
- * be at least max( 1, k ).
- * Unchanged on exit.
- *
- * BETA - COMPLEX*16 .
- * On entry, BETA specifies the scalar beta.
- * Unchanged on exit.
- *
- * C - COMPLEX*16 array of DIMENSION ( LDC, n ).
- * Before entry with UPLO = 'U' or 'u', the leading n by n
- * upper triangular part of the array C must contain the upper
- * triangular part of the symmetric matrix and the strictly
- * lower triangular part of C is not referenced. On exit, the
- * upper triangular part of the array C is overwritten by the
- * upper triangular part of the updated matrix.
- * Before entry with UPLO = 'L' or 'l', the leading n by n
- * lower triangular part of the array C must contain the lower
- * triangular part of the symmetric matrix and the strictly
- * upper triangular part of C is not referenced. On exit, the
- * lower triangular part of the array C is overwritten by the
- * lower triangular part of the updated matrix.
- *
- * LDC - INTEGER.
- * On entry, LDC specifies the first dimension of C as declared
- * in the calling (sub) program. LDC must be at least
- * max( 1, n ).
- * Unchanged on exit.
- *
- *
- * Level 3 Blas routine.
- *
- * -- Written on 8-February-1989.
- * Jack Dongarra, Argonne National Laboratory.
- * Iain Duff, AERE Harwell.
- * Jeremy Du Croz, Numerical Algorithms Group Ltd.
- * Sven Hammarling, Numerical Algorithms Group Ltd.
- *
- *
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER I, INFO, J, L, NROWA
- COMPLEX*16 TEMP
- * .. Parameters ..
- COMPLEX*16 ONE
- PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
- COMPLEX*16 ZERO
- PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- IF( LSAME( TRANS, 'N' ) )THEN
- NROWA = N
- ELSE
- NROWA = K
- END IF
- UPPER = LSAME( UPLO, 'U' )
- *
- INFO = 0
- IF( ( .NOT.UPPER ).AND.
- $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN
- INFO = 1
- ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND.
- $ ( .NOT.LSAME( TRANS, 'T' ) ) )THEN
- INFO = 2
- ELSE IF( N .LT.0 )THEN
- INFO = 3
- ELSE IF( K .LT.0 )THEN
- INFO = 4
- ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
- INFO = 7
- ELSE IF( LDC.LT.MAX( 1, N ) )THEN
- INFO = 10
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'ZSYRK ', INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( ( N.EQ.0 ).OR.
- $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
- $ RETURN
- *
- * And when alpha.eq.zero.
- *
- IF( ALPHA.EQ.ZERO )THEN
- IF( UPPER )THEN
- IF( BETA.EQ.ZERO )THEN
- DO 20, J = 1, N
- DO 10, I = 1, J
- C( I, J ) = ZERO
- 10 CONTINUE
- 20 CONTINUE
- ELSE
- DO 40, J = 1, N
- DO 30, I = 1, J
- C( I, J ) = BETA*C( I, J )
- 30 CONTINUE
- 40 CONTINUE
- END IF
- ELSE
- IF( BETA.EQ.ZERO )THEN
- DO 60, J = 1, N
- DO 50, I = J, N
- C( I, J ) = ZERO
- 50 CONTINUE
- 60 CONTINUE
- ELSE
- DO 80, J = 1, N
- DO 70, I = J, N
- C( I, J ) = BETA*C( I, J )
- 70 CONTINUE
- 80 CONTINUE
- END IF
- END IF
- RETURN
- END IF
- *
- * Start the operations.
- *
- IF( LSAME( TRANS, 'N' ) )THEN
- *
- * Form C := alpha*A*A' + beta*C.
- *
- IF( UPPER )THEN
- DO 130, J = 1, N
- IF( BETA.EQ.ZERO )THEN
- DO 90, I = 1, J
- C( I, J ) = ZERO
- 90 CONTINUE
- ELSE IF( BETA.NE.ONE )THEN
- DO 100, I = 1, J
- C( I, J ) = BETA*C( I, J )
- 100 CONTINUE
- END IF
- DO 120, L = 1, K
- IF( A( J, L ).NE.ZERO )THEN
- TEMP = ALPHA*A( J, L )
- DO 110, I = 1, J
- C( I, J ) = C( I, J ) + TEMP*A( I, L )
- 110 CONTINUE
- END IF
- 120 CONTINUE
- 130 CONTINUE
- ELSE
- DO 180, J = 1, N
- IF( BETA.EQ.ZERO )THEN
- DO 140, I = J, N
- C( I, J ) = ZERO
- 140 CONTINUE
- ELSE IF( BETA.NE.ONE )THEN
- DO 150, I = J, N
- C( I, J ) = BETA*C( I, J )
- 150 CONTINUE
- END IF
- DO 170, L = 1, K
- IF( A( J, L ).NE.ZERO )THEN
- TEMP = ALPHA*A( J, L )
- DO 160, I = J, N
- C( I, J ) = C( I, J ) + TEMP*A( I, L )
- 160 CONTINUE
- END IF
- 170 CONTINUE
- 180 CONTINUE
- END IF
- ELSE
- *
- * Form C := alpha*A'*A + beta*C.
- *
- IF( UPPER )THEN
- DO 210, J = 1, N
- DO 200, I = 1, J
- TEMP = ZERO
- DO 190, L = 1, K
- TEMP = TEMP + A( L, I )*A( L, J )
- 190 CONTINUE
- IF( BETA.EQ.ZERO )THEN
- C( I, J ) = ALPHA*TEMP
- ELSE
- C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
- END IF
- 200 CONTINUE
- 210 CONTINUE
- ELSE
- DO 240, J = 1, N
- DO 230, I = J, N
- TEMP = ZERO
- DO 220, L = 1, K
- TEMP = TEMP + A( L, I )*A( L, J )
- 220 CONTINUE
- IF( BETA.EQ.ZERO )THEN
- C( I, J ) = ALPHA*TEMP
- ELSE
- C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
- END IF
- 230 CONTINUE
- 240 CONTINUE
- END IF
- END IF
- *
- RETURN
- *
- * End of ZSYRK .
- *
- END
-